PRESENCE OF CRYPTOCOCCUS SPECIES IN DOMESTIC CHICKEN (GALLUS GALLUS) DROPPINGS AND THE POSSIBLE RISK IT POSED TO HUMANS IN KABIGERIET VILLAGE, NAKURU COUNTY KENYA

E.K. Kemoi, P. Okemo, C.C Bii

Request for reprints to:

PRESENCE OF CRYPTOCOCCUS SPECIES IN DOMESTIC CHICKEN (GALLUS GALLUS) DROPPINGS AND THE POSSIBLE RISK IT POSED TO HUMANS IN KABIGERIET VILLAGE, NAKURU COUNTY KENYA

E.K. KEMOI, P. OKEMO and C.C BII

ABSTRACT

Objective: To isolate and identify Cryptococcus from domestic Chicken dropping.

Design: cross sectional study.

Setting: The study was conducted in Kabigeriet Village situated in South Western Kenya in the Rift Valley Province, Nakuru county and Olenguruone Division. Olenguruone is Approximately 282 km from Nairobi, Kenya.

Subjects: Sixty four domestic chicken droppings were sampled in thirty two homesteads after obtaining the farmers consent.

Results: Two species of Cryptococcus were isolated.

Conclusion: Domestic chicken (Gallus gallus) harbor Pathogenic Cryptococcus in their dropping and their close proximity to human habitation poses a risk of AIDS to immunocompromised persons.

INTRODUCTION

The Chicken (Gallus gallus) is a domesticated fowl, which is a subspecies of the Red Jungle fowl. It is one of the most widespread and commonly domesticated birds. In 2003 the total population of birds was more than 24 billion worldwide (Perrins and Christopher, 2003) and out of this population, Chickens were the majority species of birds. Human beings can acquire diseases from domestic Chickens for example avian flu and salmonellosis.

Cryptococcosis is an opportunistic disease mainly caused by an encapsulated fungus; Cryptococcus neoformans (Burker, 2001). Cryptococcus neoformans is a basidiomycete. Insub-Saharan Africa, adult meningitis is the most common complication of cryptococcosis, mainly caused by Cryptococcus neoformans due to high prevalence of HIV. Cryptococcus neoformans has been reported to cause infections in persons infected with human immunodeficiency virus worldwide, while Cryptococcus gattii causes infection primarily in HIV-infected persons both in tropical and subtropical countries (Lakshimi et al., 2007, Dixit et al., 2009).

Biochemical and genetic studies have established the existence of the two main varieties of Cryptococcus neoformans. Cryptococcus neoformans var. neoformans includes serotypes A and D, while Cryptococcus neoformans var. gatti includes serotypes B and C (Monica, 2004) and the new species Cryptococcus bacillispora var. gatti (Barreto et al., 2004). Due to AIDS pandemic Cryptococcosis has emerged as the major cause of death in HIV / AIDS infected individual (Grusse et al., 2001). Cryptococcus neoformans causes cryptococcal meningoitis in patients with AIDS which is lethal. In Thailand the incidence of cryptococcal meningitis has been reported to be at 18.5% in individuals suffering from HIV AIDS (Suwat et al., 2001), while in USA the annual incidence is 2-4 cases per 1,000 persons (http://rightdiagnosis.com/artic/cryptococcossis/dbmd.htm). Cryptococcus neoformans var. gattii was first isolated from a Guettarda aereana tree in the Brazilian Amazon rainforest (Fortes et al., 2001).

MATERIALS AND METHODS

Study area: The study was carried out in Kabigeriet Village, Olenguruone in Nakuru County. Olenguruone is Approximately 282 KM from Nairobi, Kenya. The area lies at about 35° 41'E and 0,1° 35'S. The climate is sub-humid consisting of one rainy season (April to December) and dry season (January – March). The average annual rainfall is 1200 mm and the average temperature is 28oC with small variations (±5oC) throughout the year (Meteorological Kenya, 2009). The study area was chosen since it is a typical rural setting where domestic Chicken are reared in close proximity with humans. Unlike in other Divisions of Olenguruone, in Kabigeriet village most farmers rear only domestic chicken in a free range system.

Subjects: The study was a cross sectional laboratory based study carried out for a period of five months, (April 2010 to August 2010). Sixty four Chicken droppings were sampled in thirty two homesteads after obtaining the farmers consent.
Sample collection: Environmental collection of domestic Chicken droppings was done by scooping fresh droppings from Chicken houses, grass, soil and trees using sterile plastic spoons. Each spoon was used once and discarded into sterile ziplock bags. Droppings which could not be collected using a spoon were swabbed by passing a sterile swab over each sample until it turned “dirty”. Plate 1 and Plate 2 show some of the collection sites.

Plate 1: Chicken droppings on top of timber inside an abandoned house

Plate 2: Chicken droppings a human house.

Specimen preparation: One Gram of domestic Chicken dropping was weighed on sterile film paper using a scale balance and then transferred to a 10 ml sterile round bottomed tube containing 5 mls distilled water then incubated for 1h with agitation (mix every 15 min) (Misuzu et al., 2004). Two 1.7 ml appendoff tubes were filled with 900 µl distilled water and 100 µl of the original sample added to the first tube, (dilution factor 1:10) then 100 µl of the 1:10 dilution added to the last tube containing 900 µl distilled water, giving a dilution factor of 1:100 in the second dilution. Approximately 100 µl of the second dilution were inoculated onto Niger seed agar plate.

§For swabs, 100 µl of distilled water was added to a round bottomed tube and the tip of each swab containing sample dipped into distilled water with agitation to make a suspension. Similar amounts for swabs suspension were inoculated onto Niger seed agar plate. pH 6.8±0.2 (BBL, MD). All inoculated plates were incubated at 30°C for 72h checking daily for growth. Yeast-like colonies showing a cream to brown pigmentation and mucoid characteristic were isolated in pure culture in Sabouraud dextrose agar pH 5.6±0.2 (Difco, Detroit, MI, USA) (Yamamoto et al., 1995). Suspected Cryptococcus colonies were tested for urease activity and hyphae production by sub-culturing further onto Christensen’s urea agar and corn meal agar respectively (Kwon-Chung and Berneett, 1992). Cryptococcus species were confirmed using API 20C AUX (Bio Merieux SA).

RESULTS

Profiles

i. Niger seed agar
Of all the 64 samples plated onto Niger seed agar however, only 8 isolates showed Cryptococcus characteristics; brownish-black colouration due to uptake of diphenolic substrates in presence of phenoloxidase. Phenoloxidase enzyme produced by Cryptococcus oxidizes diphenolic via labile dopachrome intermediates, to melanin polymers.

ii. Urease test
All the 8 isolates tested were positive for urease (Plate 3). Hydrolysis of urea in Christensen’s urea agar by Cryptococcus species was indicated by change of colour of the indicator from yellow-orange to pinkish red.

Plate 3: Urease positive yeasts in Christensen’s urea media, read after 24h at 30°C.

iii. Cornmeal agar
All the Cryptococcus species that were urease positive in Christensen’s urea agar were plated on cornmeal agar to distinguish it from other yeast such as Candida albicans, C. tropicalis, C. parapsilosis and C. krusei through the formation of pseudo hyphae, true hyphae, arthrospores and chlamydospores. Cryptococcus spp. does not form any hyphae or pseudo hyphae on corn meal agar.

Plate 4: Cryptococcus neoformans in Corn meal agar showing, Round, thick-walled with spaced between cells, indicative of capsules read after 48h at 30°C.
Confirmation of Cryptococcus using API 20 C AUX

Out of the 8 urease positive isolates which were subjected to API 20 C AUX, only 2 were confirmed as Cryptococcus species, which were isolates from Chicken droppings. This might being due the fact that Cryptococcus inoculated onto API 20 AUX were not pure isolates.

Table 1
Cryptococcus species identified using API 20 C AUX

<table>
<thead>
<tr>
<th>Types of Cryptococcus</th>
<th>n(+)ve</th>
<th>%(+ve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptococcus laurentii</td>
<td>1</td>
<td>12.5%</td>
</tr>
<tr>
<td>Cryptococcus neoformans</td>
<td>1</td>
<td>12.5%</td>
</tr>
<tr>
<td>None Cryptococcus species</td>
<td>6</td>
<td>75%</td>
</tr>
</tbody>
</table>

DISCUSSION

The aim of this study was to investigate the possible presence of Cryptococcus in Domestic Chicken droppings and soil enriched with droppings as a possible source of infections to humans, particularly immunosuppressed individuals. Cryptococcus neoformans is prevalent in the environment especially in birds’ excreta such as pigeon or soils contaminated with birds’ faeces which provide good nutrients for growth of pathogenic yeasts like Cryptococcus species (Reimao et al., 2007). Such excreta or contaminated soils therefore become possible reservoir and sources of infections.

Cryptococcosis is a deep-seated mycosis that can be classified into three forms of diseases; disseminated cryptococcosis, pulmonary cryptococcosis and cryptococcal meningitis (Misuzu et al., 2004). High prevalence of Cryptococcus neoformans in natural environment especially in birds’ droppings and soil enriched with bird droppings has been documented by several investigators in different parts of the world (Lazera et al., 2000, Misuzu et al., 2004, Reimao et al., 2007). Thus, pigeons and other birds’ droppings are vehicles for human pathogenic Cryptococcus neoformans (Bauwens et al., 1996). There are only few reports of the isolation of this organism from domestic chicken in Kenya, and isolation from such environment is quite low. Kielstein (1996) and Walter and Yee (1968) attributed this to high pH and presence of high molecular growth inhibitory substances in Chicken droppings. However, infections caused by Cryptococcus species have been reported in severe immunosuppression cases (Esaki et al., 2006).

Cryptococcus neoformans have been isolated in immunocompromised patients particularly those with acquired immune deficiency syndrome (AIDS) (Rodero et al., 2000). Its caused cryptococcal meningitis which is a life-threatening infections in patients living with AIDS with prevalence of 46% in Africa (Kaplan et al., 2000, Mirzan et al., 2003, Wong et al., 2007, Lakshimi et al., 2007) with mortality rate of 13 - 44% (French et al., 2002, Corbett et al., 2002). The present study has found out that Domestic Chickens are reservoirs of human pathogenic Cryptococcus neoformans. Thus, these might been another source of infections to people living with acquired immunodeficiency syndrome. There were minimal cases of Cryptococcosis before the HIV/AIDS pandemic (Esaki et al., 2006). Due to HIV/AIDS pandemic the disease has emerged as a major cause of infirmity and death in infected HIV/AIDS victims.

In Kabigeriet village, Olenguruone, most people reared chickens in their yards and out of 32 homesteads sampled during the study; 17 (53.1%) homesteads kept their chicken inside their houses. In this study we succeeded in isolating two Cryptococcus species (Table 1) from Kabigeriet chicken droppings, with isolation rate of 3.1%. Isolation of Cryptococcus from chicken droppings is difficult since it can be affected by some biotic factors such as soil bacteria when grown on media by inhibiting or killing the yeasts (Akram et al., 2005, Misuzu et al., 2004). Once Cryptococcus species is detected from one house, it is likely that there is Cryptococcus species in droppings from other homesteads in the same location. There was higher isolation rates of yeasts in chicken droppings (100%) compared to soils (0%). This could be attributed to soil exposure to harsh environmental condition like; less availability of nutrient in the soil, dilution of soil especially during rainy seasons and sunlight that could not support yeast survival for a long time. The weather in Kabigeriet village, Olenguruone is considered appropriate for the growth of Cryptococcus; with a mean temperature of 28°C with small variations (±5°C) throughout the year and mean annual rainfall of 1200 mm. It has been reported that cryptococcosis in AIDS patients is predominant during the rainy season (Bell et al., 2001), although our data showed a different pattern. It is believed during dry season patients inhaled a lot of the spores and the infection could have gone into latency period of six months before its manifestation. Therefore, it is conceivable that the seasonal predominance of Cryptococcus neoformans is an important factor in cryptococcal infection (Misuzu et al., 2004). This seasonal difference in the environmental isolation does necessarily account for the latent period of the infection. The immune status of the host is a very important factor that affects cryptococcal sideration, considering a years-long latency period. Also reactivation of cryptococcus is possible (Blasi et al., 2001).

The mechanism by which the birds’ excreta get infected with pathogenic yeasts is still not known (Filiu et al., 2002). The screening of new target such as the domestic chickens in the environment for Cryptococcus species ecology niche can be an important step in explaining the spread mechanism of the yeast.
Further research work should done to identifying simple methods to prevent cryptococcosis, such as regular cleaning of Chicken roasting sites to avoid human exposure.

REFERENCES


